湖北昕洁新能源科技有限公司
太阳能光伏发电 , 太阳能光伏组件 , 太阳能用户供电
家用太阳能光伏发电系统专业团队在线服务
发布时间:2020-07-18







         除此外,家用光伏电站还有哪些功能呢?


       能扶贫:太阳能发电清洁环保,技术可靠,收益稳定。所以这样一个靠谱地项目自然也成了精准扶贫战略中地主力军,很多贫困地区地农户都在政府及各界帮助下装上了家用光伏电站,享受着光伏发电地稳定收益。

       能养老:不少农村地老人没有养老保险,因此,家用光伏电站这一收益稳定地产品就成为适合老人们地养老依靠。孩子们投资建设,老人每月固定领钱,收益长达20年。

       能“出名”:现在家用光伏电站还是个新事物,谁家装上一套,那就得是十里八乡地小名人,地方报纸、都得报道报道呢。这些都是跟你我一样地普通人,就因为装了家用光伏电站上了电视!



光伏组件作为光伏发电系统中的核心组成部分,质量问题影响着电站系统效率,其中,热斑效应和PID效应对光伏组件功率的影响尤其突出,不容忽视。今天小编介绍影响光伏组件功率好坏的两大效应详解;


1、热斑效应

热斑效应是指在一定条件下,串联支路中被遮蔽的光伏组件将当做负载,消耗其他被光照的电池组件所产生的能量,被遮挡的光伏电池组件此时将会发热的现象;被遮挡的光伏组件、将会消耗有光照的光伏组件所产生的部分能量或所有能量,降低输出功率;要想降低匹配损失耗损,以提高电站发电量,要注意以下几个方面:1、减少匹配损失,尽量采用电流一致的组件串联。严重将会光伏组件、甚至烧毁组件。

2、热斑效应产生原因

造成热斑效应的根源是有个别坏电池的混入、电极焊片虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局部受到阴影遮挡等;由于局部阴影的存在,光伏组件中某些电池单片的电流、电压发生了变化。其结果使电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升;我们有足够的太阳能光伏配件您可以使用它来照顾你的太阳能系统,以确保它将在未来几年能很好地为你服务。

3、防护措施要求

在光伏电池组件的正负极间并联一个旁路二极管,以增加方阵的可靠性。通常情况下,旁路二极管处于反偏压,不影响组件正常工作。其原理是当一个电池被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电流的部分被二极管分流,从而避免被遮电池过热损坏。以避免光照组件所产生的能量被受遮蔽的组件所消耗。三,进行屋顶太阳能发电的时候,只需要发光能转换成电能就可以了,方式比较简单。

2、PID效应

电位诱发衰减效应是电池组件长期在高电压作用下,使玻璃、封装材料之间存在漏电流,大量电荷在电池片表面,使得电池表面的钝化效果恶化,导致组件性能低于设计标准。PID现象严重时,会引起一块光伏组件功率衰减50%以上,从而影响整个组串的功率输出。高温、高湿、高盐碱的沿海地区易发生PID现象。国家和地方给予的各项优惠措施,使得光伏发电越来越为广大居民特别是农民所认可,安装和申请并网的分布式光伏发电项目户数呈不断增长。

3、产生的原因

一是系统设计原因,光伏电站的防雷接地是通过将方阵边缘的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID现象的发生,但逆变器负极接地会增加相应的系统建设成本;二是光伏组件原因,高温、高湿的外界环境使得电池片和接地边框之间形成漏电流,封装材料、背板、玻璃和边框之间形成了漏电流通道。通过使用改变绝缘胶膜乙烯酯(EVA)是实现组件抗PID的方式之一,在使用不同EVA封装胶膜条件下,组件的抗PID性能会存在差异。另外,光伏组件中的玻璃主要为钙钠玻璃,玻璃对光伏组件的PID现象的影响至今尚不明确;3、电池片主要作用就是发电的,发电主体市场上主流的是晶体硅太阳电池片、薄膜太阳能电池片,两者各有优劣。三是电池片原因,电池片方块电阻的均匀性、减反射层的厚度和折射率等对PID性能都有着不同的影响。

4、有效抑制PID效应的措施

首先是从组件侧考虑,采用非Na、Ca玻璃提高玻璃的体电阻,阻断漏电流通路的形成;或者采用非乙烯—共聚物的封装材料;太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟硒太阳能电池。其次是从逆变器侧考虑,采用组件负极接地的方式,防止负偏压造成的漏电流形成,处置方案简便、成本低、效果显著,但负极直接接地会造成安全隐患,威胁电站的正常运行和运维安全。逆变器负极接地后,若发生组件正极接地故障则会造成电池板短路,而运维人员如若接触到正极则会发生危险,所以负极接地电路必须具有异常电流监测及分断保护系统,方可在抑制PID效应的同时保障电站设备的运行安全。



现在安装光伏电站,监控系统成为了现在的标配,有了监控系统,不仅可以随时随地了解光伏电站的运行情况,还可从监控参数和运行图形中,找到系统可能会存在的问题,判断故障的类型,从而快速解决问题,降低损失。阴暗遮挡是光伏系统常见的一种故障,而动态的阴影遮挡并不是一直都有,要在现场长时间的观察才能看到,但从监控参数中也可以找到规律。逆变器的效率光伏逆变器是光伏系统的主要部件和重要组成成份,为了保证电站的正常运行,对逆变器的正确配置选型显得尤为重要。


1.阴影遮挡会系统的影响

晶硅组件是由60或者72个电池片组成的,一般是20或者24个电池片构成一串,每串都有一个旁路二极管,当组件出现局部遮挡或者损坏时,由发电单元变为耗电单元,产生热斑效应,电阻值增加,二极管两端电压升高而导通,让其它正常组件所产生的电流通过,系统继续发电。国家能源局新能源和可再生能源司副司长梁志鹏介绍,“十三五”时期,我国将持续完善太阳能光伏发电市场体系,快速扩大光伏发电规模化利用规模和水平。

2.什么是阴影遮挡

由于受到云层,树木,建筑物以及飞禽排泄物的影响,光伏阵列会受到局部阴影遮挡,这时候光伏组件接收的光照强度会发生改变,逆变器输出功率降低。

阴影又分为主观阴影和客观阴影,主观阴影又可以分为动态阴影和静态阴影,客观阴影指因天气原因而造成的光照强度减弱,比如云雾、雨雪等天气,主观阴影是由附近障碍物阻拦了阳光直射而造成的阴影覆盖,主观静态阴影特指组件表面的覆盖物,如鸟粪、树叶、灰尘、积雪等。主观动态阴影就是广义的“阴影”,它由光伏系统周边的高大建筑物,烟窗、树林、电线杆,或者方阵前后排引起的,形状随太阳的移动而变化,一般中午太阳直射时没有,早晨或者傍晚有。这种模式Zui适合家用、工商业分布式光伏发电,每发一度电国家给0。



太阳能在现代社会用途越来越广,那么,太阳光是如何转化成电能的呢?

太阳能发电的主要原理是根据光生伏打效应,由太阳能组件发出直流电。如果是并网系统则通过并网逆变器直接将电能并入电网;如果是离网系统则通过太阳能控制器给蓄电池及负载充放电。

光生伏打效应

一束光照在半导体上和照在金属或绝缘体上效果截然不同。由于金属中自由电子如此之多,以致光引起的导电性能的变化完全可忽略。绝缘体在很高温度下仍未能激发出更多的电子参加导电。而导电性能介于金属和绝缘体之间的半导体对体内电子的束缚力远小于绝缘体,可见光的光子能量就可以把它从束缚激发到自由导电状态,这就是半导体的光电效应。当半导体内局部区域存在电场时,光生载流子将会积累,和没有电场时有很大区别,电场的两侧由于电荷积累将产生光电电压,这就是光生伏效应,简称光伏效应。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。





展开全文